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While deep learning has demonstrated tremendous potential for photonic device design, it often demands a large
amount of labeled data to train these deep neural network models. Preparing these data requires high-resolution
numerical simulations or experimental measurements and cost significant, if not prohibitive, time and resources.
In this work, we present a highly efficient inverse design method that combines deep neural networks with a
genetic algorithm to optimize the geometry of photonic devices in the polar coordinate system. The method
requires significantly less training data compared with previous inverse design methods. We implement this
method to design several ultra-compact silicon photonics devices with challenging properties including power
splitters with uncommon splitting ratios, a TE mode converter, and a broadband power splitter. These devices are
free of the features beyond the capability of photolithography and generally in compliance with silicon photonics
fabrication design rules. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.416294

1. INTRODUCTION

The advent of photonic integrated circuits (PICs) is expected to
revolutionize many industries such as optical interconnects
[1–3], optical sensing [3–6], and optical computing [7,8]. The
progress of PICs demands compact photonic devices with a va-
riety of properties to increasingly integrate more functionality
on a chip. The property of a photonic device is highly deter-
mined by its geometry, which is usually designed and optimized
by an experienced photonic designer based on intuition and
numerical simulations. This traditional method is limited by
designers’ experience and usually only applies to the designs
with simple geometric structures. However, complex geom-
etries are often required for realizing ultra-compact photonic
devices with challenging properties. The design of these com-
plex structures with a large number of parameters is beyond the
capability of human intuition and demands more efficient
methods. The brute force optimization method is impractical,
as the numerical simulation algorithms, such as the finite-
difference time-domain (FDTD) method, are very computa-
tion intensive and time consuming. Traditional regression-
based optimization methods face difficulties in convergence
due to the high-dimensional parameter space. A variety of in-
verse design methods such as level set methods, adjoint
method, local-optimization techniques, and direct-binary

search [9–19] have been developed to tackle this issue. These
methods expand the design space and realize many photonic
devices with complex and nonintuitive structures that present
extraordinary properties. Fundamentally, these algorithms are
rule-based approaches containing iterative searching steps in
a case-by-case manner, often relying on numerical simulations
in each step to produce intermediate results that help to modify
the searching strategy. Such stochastic algorithms are limited by
their random-search nature and are insufficient for complex de-
signs in a multi-constrained problem [20–22].

This challenge may be addressed by deep learning (DL) and
more specifically deep neutral networks (DNNs), which use
many processing layers to learn the representations of data with
multiple levels of abstraction [23]. DNN has been revolution-
izing many fields, including image analysis [24], natural lan-
guage processing [25], materials science [26], quantum
physics [27], and so on. Neural network (NN)-based methods
have previously been adopted in studying photonic devices
such as phase delay structures [28], photonic crystal nanocav-
ities [29], and nanophotonic particles [30]. However, applying
a DNN to photonic device design faces a practical challenge of
preparing a large training dataset [20]. For example, Ma et al.
used an NNmodel trained on 30,000 device designs for a chiral
metamaterial inverse design [31]; Tahersima et al. used an NN
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model trained on 20,000 designs to realize a power splitter with
specific splitting ratios [32]. These large amounts of design data
are generated by high-resolution 3D FDTD simulations and
may take days to complete on a typical workstation.

In this paper, we present a genetic-algorithm-based deep
neural network (GDNN) method that requires an order of
magnitude less simulation data (less than 3000 in the presented
cases) for training. By using this approach, we have designed
several silicon photonics devices including power splitters with
uncommon splitting ratios, a TE mode converter, and a broad-
band power splitter. Besides high efficiency, the algorithm
exhibits great flexibility and ability in dealing with multiple de-
sign constrains. For example, the broadband power splitter is
designed for as many as 11 optimization targets, and the
optimal design exhibits a maximum insertion loss of 0.47 dB
and good flatness over 400 nm wavelength range with a
2.5 μm × 1.5 μm footprint. In addition, these devices are free
of the features beyond the capability of photolithography
and generally in compliance with silicon photonics fabrication
design rules.

2. ALGORITHM

The GDNN-based inverse design algorithm developed in this
work includes encoding, selection, and DNN-based forward
and inverse design processes. The workflow of the algorithm
is exhibited in Fig. 1. First, the device models and numerical
simulation results of the initial device designs are encoded into
a dataset called population (step A of Fig. 1). In mimicking the
natural selection process, the population is selected with respect
to an objective function (step B of Fig. 1). The whole popu-
lation is also used to generate the weight parameters in the
DNNmodels of both the forward design and the inverse design
[step C (1) of Fig. 1]. The selection process produces an adap-
tive (good performance) generation as the parents to reproduce
their offspring through the inverse design process [step C (2) of
Fig. 1]. These offspring are then added to the initial population
(step D of Fig. 1) and update the weights in the DNN models
to start the next iteration. This process is repeated until the
DNN model meets the required optimization target to the
investigated design problem.

A. Encoding
The encoding process aims to map a physical problem, e.g., the
output optical power of an optical device with multiple degrees
of freedom in its physical structures, to a mathematical data
structure. An encoded data structure represents a solution to
the problem and affects the optimization process. In this work,

each individual of the initial population is described with two
sets of parameters. One set represents the encoded device physi-
cal structure that will be genetically optimized, and the other
represents the investigated optical performance. The encoding
process of a power splitter device is schematically shown in
Fig. 2. An arbitrarily shaped one-by-two power splitter includes
one input waveguide, two output waveguides, and a core that is
described by its border line. By considering the device design
rules and its symmetry, we adopt the polar coordinate system
with its origin located on the center line and use two sets of
polar vectors (R1

i � fR1
0,R

1
1,…,R1

ng,R2
i � fR2

0,R
2
1,…,R2

ng)
to discretize the top (within [0, π]) and the bottom (within
[π, 2π]) part of the border line, respectively. The complete
device structure is formed by smoothly connecting these two
sets of polar vectors and combining the input and the two out-
put ports. Practically, a foundry generally imposes design rules
to disallow very small or sharp structures in a layout. Thus,
we also introduce a set of gradient constraints α (S �
fR1

0,R
2
0, α

1
1, α

2
1,…, α1n, α2n, d 0g) between the radii of the two ad-

jacent polar vectors. With this encoding process, an individual
device is completely described by a design parameter vector
S � fR1

0,R
2
0, α

1
1, α

2
1,…, α1n, α2n, d 0g, where d 0 is the distance

of the output branch from the origin as shown in Fig. 2. The
investigated performance or the optimization objective is rep-
resented by a figure of merit (FOM), which is defined as the
optical power in the zeroth transverse electric (TE0) mode of an
output waveguide. If the transverse magnetic (TM) component
is negligible, which is validated by simulation results, the FOM
can be calculated by

FOM � 1

4

jRσ�E ×H�
0 � E�

0 ×H � · dσj2R
σ Re�E0 ×H�

0� · dσ
, (1)

where σ is the cross section of the waveguide, E0 (H 0) is the
electric (magnetic) field distribution of the TE0 mode in the
waveguide, and E (H ) is the output electric (magnetic) field
distribution from the device FDTD simulation. We believe

Fig. 1. Workflow of the GDNN algorithm developed in this paper.

Fig. 2. Encoding process that uses polar vectors and design rule con-
strains as a parameter vector to describe the design of a given photonic
device.
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that using the polar coordinate system with carefully designed
constraints can effectively describe a sufficiently flexible device
geometry while avoiding the violation of foundry design rules.
This encoding approach simplifies the complexity of the
GDNN inverse design algorithm and can be generalized for
other optical device structures beyond the several examples
shown in this work.

B. Selection and DNN-Based Evolution
The population selection process is a prerequisite for DNN-
based inversed design. It evaluates the FOM of each individual
in the current population and selects a subset of the population
with good values to be the parents that “reproduce” the next
generation of device designs. Due to the “genetic” correlation
between the parents and the offspring connected by the neural
networks, additional factors can be added to the selection pro-
cess to intentionally guide the direction of certain features in
the evolution. For example, a punishment factor on the device
area can be added to guide the algorithm to favor more compact
designs.

A genetic algorithm mainly includes three operations: selec-
tion, crossover, and mutation. Crossover and mutation are the
key steps to produce excellent offspring. In the GDNN algo-
rithm, we use the DNN model to replace the crossover and
mutation operations of the genetic algorithm. The DNN
model can be inferred in both forward and inverse ways.
The forward design process can obtain the device FOM and
network weight parameters in the form of a given encoded de-
sign parameter vector. The network weight parameters are the
key settings for enabling the reverse design process. The inverse
design process after obtaining the network weight parameters
utilizes the FOM data associated with wavelength as the input
to produce offspring device designs that are correlated but dif-
ferent than the parent. The forward and the inverse design
processes are schematically shown in Fig. 3. A fully connected
multilayer DNN is used with the sigmoid activation function
and back-propagation method for weight updates.

In the inverse design process, the cost function is repre-
sented by the error E of the FOM of a specific design
(S � fx1,…, xng, Y � fFOM1, FOM2g) from its ideal value
T ,

i.e., E � Pm
i�1 �FOMi − T i�2. This error is back-propagated

by the equation
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where Zk
i is the weight of the neurons in the kth layer, i.e.,

Zk
i �

PN
j�1 f �W k−1

j,i � Zk−1
j �, where f is the activation func-

tion. By repeating this step, the error eventually propagated to
the input layer gives the offspring device design variation

Δxi �
XN
j�1

�
δ1j ·

∂Z 1
j

∂xj

�
�

XN
j�1

�δ1j · f 0�xj��, (3)

where f 0�xj� is the derivative of the activation function.

3. SIMULATION RESULTS

In order to study its capability and performance, we applied the
GDNN algorithm to design several very compact Si photonics
devices as examples, including low-loss power splitters with spe-
cific unequal output powers, a TE mode converter, and a broad-
band power splitter. All of these devices are designed based on
common Si photonics platforms with silicon-on-insulator (SOI)
substrates with 220 nm device silicon and a 2–3 μm buried oxide
(BOX) layer. The waveguide is 500 nm in width and operated at
(or around) 1550 nm wavelength. All the devices are designed
according to the process design rule that no line or space feature
size is smaller than 0.2 μm.

We take a power splitter with splitting ratio of 2:3 as an
example to quantitatively analyze the design process. The initial
population is composed of 1000 device structures randomly
generated according to the encoding process stated earlier.
The distribution of total optical transmission of a typical ran-
dom population is shown in Fig. 4(d). In this case, the majority

Fig. 3. Schematic drawing of the DNN models of the forward and
inverse design processes.

Fig. 4. Design analyses of a power splitter with splitting ratio of 2:3:
(a) the evolution of the qualified population proportion; (b) and (c) the
FDTD simulation result of the best devices in the initial population
and the final population; (d) the distribution of optical transmission of
the initial population.
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of the population show very poor transmission, and only 1.5%
transmit >80% light. The FDTD simulation result of the best
device in this initial population is shown in Fig. 4(b). Then the
DNN-based inverse and forward design processes are iterated
with 50 offspring designs produced in each cycle. The evolu-
tion of the population proportion that exceeds a certain optical
performance target, e.g., transmission >90%, with respect to
the number of design iterations (generations) is shown in
Fig. 4(a). The evolution plot shows the growth of performance
with iterations until it saturates to about 80%. Another way to
study the convergence is the cost function mentioned earlier,
i.e., the root-mean-square error (RMSE) of the FOM with re-
spect to a target value. The RMSE as a function of generation is
also shown in Fig. 4(a) and clearly exhibits a convergence
behavior. The algorithm generates a robust high-percentile
good performance as well as low variations beyond about 14
generations. The FDTD simulation result of the final device
design generated from this algorithm is shown in Fig. 4(c).
The device has a size of only 2 μm × 1.7 μm, 0.27 dB insertion
loss, and 2:00:3.08 splitting ratio.

Similar design processes are adopted to optimize the
other optical devices including a 1:2 power splitter with
0.36 dB insertion loss and 2.2 μm × 1.8 μm footprint [Fig. 5
(a)], a 1:1 power splitter with 0.18 dB insertion loss and
2 μm × 1.5 μm footprint [Fig. 5(b)], a TE mode converter
with 77% TE0-to-TE1 mode conversion efficiency and
3 μm × 1.5 μm footprint [Fig. 5(c)], and a broadband power
splitter operating over a 400 nm range [Fig. 5(d)]. The TE
mode converter is an order of magnitude smaller than a conven-
tional directional coupler-based design [33,34]. The successful
design of the broadband power splitter shows the capability of
multi-objective optimization in our algorithm. The broadband
power splitter is optimized from the 1:1 power splitter shown
earlier by introducing optimization objectives at 11 wave-

lengths evenly distributed between 1350 and 1550 nm. The
multi-objective GDNN model optimizes the power splitter de-
sign [Fig. 5(d)] with a maximum insertion loss of 0.47 dB and a
maximum loss variation of 0.36 dB within 400 nm (1250–
1650 nm) and 2.5 μm × 1.5 μm footprint. More importantly,
the maximum insertion loss is 0.2 dB and the maximum loss
variation is 0.09 dB within the 200 nm (1350–1550 nm) de-
sign range. In comparison, the 1:1 power splitter shown in
Fig. 5(b) shows more than double insertion loss and loss varia-
tion. The designed broadband power splitter presents good per-
formance from the O band to the C band and is useful in
applications demanding wide-band operations.

4. DISCUSSIONS AND CONCLUSION

In this work, the DNN was implemented by using PyTorch, an
open source machine learning framework. The same GDNN
architecture is used for all the designs. The architecture includes
10 hidden layers with the dimension of 100. There are 1000
trained data for the initial population and 50 reproduced off-
spring for each iteration. The algorithm is implemented on a
workstation with an AMD Ryzen 3700X CPU and a Nvidia
GeForce RTX 2070 GPU. It takes about 6–10 h to complete
the whole design including the FDTD simulation of the 1000
initial population data and the whole genetic optimization
process.

DNN has been proved to be a powerful tool for designing
optical devices using an inverse design process. Previous DNN-
based inverse design algorithms usually require 20,000 to
40,000 training data [31,32], which take the majority of the
design time due to the computation intensive high-resolution
FDTD simulations. The use of genetic optimization reduces
the number of the training data by an order of magnitude. In
addition, unlike many inverse design algorithms, our GDNN
algorithm does not require the initial data set to include a large
amount of good performance designs because the quality of the
population is iteratively improved during the evolution. In fact,
we intentionally include some device designs, violating design
rules that serve for regulating the constraints of the inverse de-
sign. As shown in Table 1, the GDNN uses 1000 sets of data
for the initial training of the model. After that, 50 sets of off-
spring will be added to participate in the training of the model.
It is worth mentioning that the model design with similar struc-
tural design uses the same set of initial datasets (1000 sets of

Fig. 5. GDNN design examples with transmission spectrum and
FDTD simulation results: (a) a 1:2 power splitter, (b) a 1:1 power
splitter, (c) a TE mode converter, and (d) a broadband power splitter.

Table 1. Training Data Summary of the Designs in This
Work

Device
Designs

Initial
Data

Number of
Iterations

Number of
Offspring

Total
Data

Power splitter
(1:1)

1000 35 50 2750

Power splitter
(1:2)

1000 28 50 2400

Power splitter
(2:3)

1000 32 50 2600

TE mode
converter

1000 30 50 2500

Broadband
splitter

1000 23 50 2150

B250 Vol. 9, No. 6 / June 2021 / Photonics Research Research Article



data), for instance, power splitter (1:1) and broadband splitter,
power splitter (1:2) and power splitter (2:3). Our GDNN al-
gorithm completes a design task with less than 3000 design data
including the 1000 initial population and the offspring of all
iterations. This is an order of magnitude less than the training
data for a typical previous inverse design algorithm.

In comparison, we have investigated using an efficiency-
focused generative adversarial network (GAN) model to design
the same photonic devices (2:3 power splitter). The results
(Fig. 6) show that greater than 10,000 device design training
data are required to achieve designs with comparable
performance.

In conclusion, by combining DNN with genetic evolution,
our GDNN method exhibits great flexibility and efficiency in
designing ultra-compact photonic devices with challenging
properties. Compared with previous optimization algorithms,
the GDNN algorithm is more capable of complex multi-
constraint and multi-objective optimization. Without relying
on pixelized features in a predefined geometry and grid, our
method allows design of more flexible device structures while
obeying fabrication design rules. The genetic evolution nature
of the algorithm greatly increases computation efficiency and
reduces FDTD training data by an order of magnitude com-
pared with previous DNN-based inverse design methods. In
addition, the genetic selection process allows introduction of
biases to guide certain design directions such as a small foot-
print. To exhibit the capability of the method, we design several
Si photonics devices including power splitters with uncommon
splitting ratios, a TE mode converter, and a broadband power
splitter. These devices are free of the features beyond the
capability of photolithography and generally in compliance
with silicon photonics fabrication design rules. We believe
the presented GDNN algorithm can be widely implemented
in designing many complex micro- and nanophotonic struc-
tures that could not be easily realized before.
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